【摘 要】 通过研究分析高流态混凝土的技术性能及经济性能,总结出大规模应用高流态混凝土可有效降低污染物排放、提高构筑物耐久性能,降低建筑使用周期内的综合成本,并提出高流态混凝土在不同领域的应用前景。
【关键词】 高流态;自密实;补偿收缩;性能;前景
混凝土是人类最早使用的复合型材料之一,早在远古时期,人类便使用以粘土、石灰、石膏、火山灰等为胶凝材料,以碎石、贝壳等为骨料,以稻草、灌木等为抗拉材料的原始混凝土。1824年,英国利兹城的泥水匠阿斯普丁(J.Aspdin)发明了波特兰水泥,从而宣告了现代混凝土的诞生。用波特兰水泥配制成的混凝土具有工程所需要的强度和耐久性,而且原料易得,造价较低,特别是能耗较低,因此,现代工程广泛使用混凝土作为结构材料。随着混凝土应用的推广,一些混凝土自身性能的不足也逐渐体现出来,如耐久性差、振捣密实困难、生产效率低下、环保性能差等。针对上述问题工程界提出了高流态混凝土(High-Flowing Concrete)的概念。高流态混凝土,顾名思义就是指具有高流动性能的混凝土。高流态混凝土流动性好,混凝土拌合物依靠自重不需要振捣即可充满模型和包裹钢筋,具有良好的施工性能和充填性能,而且骨料不离析,混凝土硬化后具有良好的力学性能和耐久性能。
1高流态混凝土相较于普通混凝土的主要性能及特点
1.1高流态混凝土的自密实性能。自密实混凝土(self-compacting concrete即SCC)是高流态混凝土的重要分支,根据其特性,自密实混凝土可以定义为[1]:混凝土在浇筑过程中不经外力振捣,仅靠重力即可通过钢筋间隙,密实填充模板的每一个角落,形成均匀密实的结构,且在浇筑过程中不泌水、骨料不离析。现代混凝土自诞生以来已经发展到第四代——高性能混凝土(HPC),高流态自密实混凝土是第四代混凝土的一个重要的组成部分和发展方向。高流态自密实混凝土在施工中表现出优良的工作性能,混凝土在浇筑过程中无需振捣而完全依靠重力作用自由流淌并充分填充模板内的空间,混凝土硬化后,由于其密实填充的特点,因此较普通混凝土拥有更好的力学性能和耐久性能。自密实混凝土目前主要用于钢筋密集、无法振捣的施工部位,保证混凝土在不利施工条件下也能密实浇筑。
1.2高流态混凝土的泵送性能好[2]。随着建筑行业的发展,混凝土的强度等级愈来愈高,建筑物的高度也愈来愈高。相应的,高强度商品混凝土的泵送高度、长度也越来越大。普通混凝土随着强度的增加,水胶比相应减小,混凝土的流动性能随之降低,无法满足高层泵送要求。而经过配合比设计,加入高效泵送剂后配置而成的高流态高强混凝土可以长时间保持流动性,可有效提高高强混凝土的泵送高度和泵送距离,且混凝土凝结后的强度不受影响。如芝加哥Water Tower Place高262米,从地下室到25层的柱子均采用了强度C70以上的高流态泵送混凝土;现今的世界最高建筑——阿联酋迪拜塔,混凝土(C60)的泵送高度达到了惊人611米;在法国的Le Refrain供水隧道(见图)的建设过程中,混凝土的水平泵送距离达到了2015米,混凝土从泵送入口到出口的时间达到了近2个小时。
图法国LeRefrain供水隧道
1.3高流态混凝土单位成本节约。高流态混凝土的经济性能可以从以下几个方面体现:首先,高流态混凝土的应用减少了施工中人员、机械的投入。其次,高强度高流态混凝土的应用,缩减了结构物截面积,实际上增大了建筑的使用面积;另外高流态混凝土的工程应用提高了结构物的耐久性、减少了今后可能的加固修复费用。我们以1m3C30混凝土的浇筑成本为例[3],应用普通混凝土和应用高流态自密实混凝土浇筑成本计算见表。从表中可以看出,由于材料费用和人工费用的增加,同强度下高流态混凝土的浇筑成本已经低于普通混凝土的浇筑成本。
1.4环保性能好。高流态混凝土的环保性能主要体现在以下几个方面:首先使用高流态混凝土减少了机械振捣工作量,降低了噪音污染;其次,在同等强度的前提下,使用高流态混凝土减少了水泥用量,据估算[4],生产1t水泥熟料所排放的二氧化碳约为1t,二氧化硫约0.78kg,氮氧化合物约1.25kg,粉尘约2.3kg;二氧化碳的大量排放直接导致“温室效应”,二氧化硫则会引起“酸雨”现象,而大量粉尘则直接污染环境,应用高流态混凝土可以节约水泥用量,从而减少了上述“副产品”的排放;另外高流态混凝土的配制过程中掺加了工业废料[5],如磨细矿渣、粉煤灰、硅灰等,可以节约水泥,保护环境,并能改善混凝土的耐久性。磨细矿渣活性好,对强度、耐久性、低水化热甚至工作性都有利。粉煤灰具有火山灰活性[6],掺入混凝土中,能降低初期水化热,少干缩,改善新拌混凝土的和易性,增加混凝土的后期强度,显著提高混凝土的耐久性。我国发电企业每年生产大量的粉煤灰,但利用率较低左右,如能大力发展高流态混凝土,将产生极大的环境“红利”。
表混凝土浇筑成本比较
以上材料单价以江苏省造价信息2010年第6期中准价为取费依据。
2高流态混凝土的应用前景
高流态混凝土的概念诞生于上世纪70年代,但我国的研究和应用较晚。近年来,随着我国国力的增强、国家对基础设施投资的增加、劳动力成本的上升、环保要求提高等原因,高流态混凝土在我国的应用逐渐增多,但应用的领域较窄,使用比例较低。结合国内外的研究与应用现状,高流态混凝土在以下几个领域使用较少,有着较好的应用前景:
2.1水工高流态自密实混凝土。近年来国家加大了对基础设施建设的投资,水利工程是投资的重点,一大批各类水利项目上马建设。水利施工中存在着体量大,形状复杂、配筋密集、作业面狭窄、难以振捣等困难。另外,水工混凝土对材料的流动性、粘聚性、抗分离性和钢筋通过能力等性能指标有着特殊的要求,根据现有研究,水工高流态自密实混凝土有着下列特点:①混凝土坍落度大,流动性好,混凝土拌和物不需振捣仅靠重力便能通过自行流动达到均匀密实;②混凝土抗分离性能良好,在穿过钢筋网后至凝结前无分层离析和泌水现象;③硬化后的混凝土干缩小,能够有效填充各结构部位,达到内实外光。水工高流态自密实如能大量应用,将极大的减少施工难度,提高施工效率及工程质量。
2.2补偿收缩高流态混凝土(微膨胀高流态混凝土)。普通的硅酸盐水泥在自然条件下硬化,具有一定的干缩性。混凝土的收缩值随着水泥的品种、熟料的矿物组成、水泥颗粒的细度水灰比的大小、养护条件的不用以及使用环境的差异等的变化而变化。根据理论7~60天内混凝土的收缩率较大,60天后混凝土的收缩率逐渐趋于缓慢、平稳。混凝土内部由于收缩会产生微裂纹,微裂纹会破坏混凝土结构的整体性,影响混凝土的力学性能和耐久性。而经过配合比设计的补偿收缩高流态混凝土在保证强度和流动性的同时还能有效的抵偿混凝土的干缩,甚至微膨胀。补偿收缩高流态混凝土在裂缝修补,新老混凝土交接施工等方面有着良好的应用前景。
2.3水下施工高流态混凝土。目前在大型公路桥梁的基础形式主要采用水下钻孔灌注桩。钻孔灌注桩基础属于隐藏工程,其质量的好坏直接决定了整个工程的质量。水下混凝土施工隐蔽性强,混凝土极易产生松散、离析、缩颈等质量问题,控制水下混凝土施工的质量是整个水下钻孔灌注桩施工质量控制中的节点工程。在水下施工中,水流速度快,施工环境复杂,施工工程难度很大。水下混凝土的整平和密实完全依靠混凝土自重来完成,混凝土如果没有良好的抗离析性和粘聚性将极易被水流冲散而影响成桩质量。此外,根据灌注桩的浇筑特点,首盘混凝土浇筑后将被后续混凝土持续顶升,在此过程中混凝土必须一直保持较高的流动性,否则就容易造成断桩、夹层等质量事故。首盘混凝土在保持长时间流动性的基础上,初凝时间还不能太迟,否则就无法达到设计强度。上述技术性能,普通混凝土很难达到。经过设计的水下施工高流态混凝土具有良好的流动性、粘聚性,塌落度延时损失小,在水下灌注桩等施工项目中有着良好的应用前景。
2.4结构补强高流态混凝土。近四五十年以来,混凝土结构物因材质劣化造成过早失效以至破坏崩塌的事故在国内外屡次发生,造成了重大的经济损失和不良的社会影响。例如,在日本沿海地区,许多桥梁、港湾建筑等,建成后10年不到的时间里,混凝土表面即出现裂纹、剥落,钢筋锈蚀外露的现象。我国很多早期混凝土构造物使用寿命远低于设计要求便出现了严重的损坏。结构补强高流态混凝土在混凝土构造物的补强修复中可以发挥很大的作用。结构物剥蚀、裂缝的修复中难度最大的就是作业面窄小,混凝土振捣困难,无法密实,这样补强工程就无法达到预期的效果。高流态混凝土因其高流动性、自密实性能,可有效解决上述问题。结构补强高流态自密实混凝土在国外已有应用,国内的研究与应用目前还是空白。
国内外大量研究及工程实例表明,大规模应用高流态混凝土可有效降低污染物排放、提高构筑物耐久性能,降低建筑使用周期内的综合成本,为我国实现节能、高效、可持续性发展的目标提供支撑。
参考文献
1赵筠.自密实混凝土的研究和应用[J].混凝土,2003(6):9~17
2王宇嵩.大粒径高流态泵送混凝土的研究与应用.山西建筑,33 (36):156~157
3齐永顺等.应用自密实高性能混凝土的经济性分析.铁道建筑,2007 (3)100~101
4吴中伟.中国水泥与混凝土工业的现状与问题.粉煤灰,1999;11(1)
5陈剑雄等.高掺量复合矿物掺合料自密实混凝土耐久性研究.混凝 土,2005(1)
6温世忆等.高流态大掺量粉煤灰混凝土的研制及应用.粉煤灰综合 利用,2005(4)
当前位置:主页 > 毕业论文 > 工学 > 材料工程学 > >
高流态混凝土的主要性能与应用前景
来源::未知 | 作者:什么app可以看nba直播-推荐正规软件* | 本文已影响 人
- 上一篇:提高磨机粉磨效率的措施研究
- 下一篇:关于灰底白板纸与白卡纸阶调再现性能研究
随机阅读
- [材料工程学] 建筑材料业发展的内驱动力
- [材料工程学] 超高分子量聚乙烯的改性及
- [材料工程学] 膜结构的加工制作与施工技
- [材料工程学] 高流态混凝土的主要性能与
- [材料工程学] 研究灰底白板纸与白卡纸阶
- [材料工程学] 盐渍土环境下混凝土结构的
- [材料工程学] 浅谈房建屋面防水工程质量
- [材料工程学] 浅谈路桥材料质量控制
- [材料工程学] 国内新型墙体材料的应用现
- [材料工程学] 钢的热处理实习报告
- [材料工程学] 浅谈高分子材料学中的分形
- [材料工程学] 梯度功能材料的研究进展
- [材料工程学] 论建筑节能新型材料的发展
- [材料工程学] 提高磨机粉磨效率的措施研
- [材料工程学] 用现代科技提升服装材质“
- [材料工程学] 纳米CeO2/Zn金属基复合材